A general purpose macrogenerator

By C. Strachey*

The macrogenerator described in this paper is a symbol string processor, both its input and its
output being strings of symbols. It operates by a form of substitation which is completely general
in its application in that it is allowed anywhere. The result is a powerful system including such
features as recursive functions and conditional expressions which can be implemented with very
few instructions.

Part 1 describes the operation of the macrogenerator and gives some indication of how it has
been used at Cambridge. Part 2 contains a sufficiently detailed account of its implementation
to make it a relatively simple task to transfer it to any suitable computer.

Part 2 describes in some detail an implementation of the general purpose macrogenerator
described in Part 1. The implementation is based cn the use of a single stack and is described
both as a series of transformations on the state of the stack, and by a CPL program. Various
error checking features are described which greatly simplify the discovery of errors in macro
programs.

Part 1

1. Introduction

A macrogenerator is usually found in close association
with a symbolic assembly routine. In most cases this
association is so close that it is very hard to distinguish
between them, and the system becomes known as a
macro-assembler. In this form, and particularly so
when a card input system is used, it is a program which
allows the use of macro-instructions which it replaces
by an appropriate sequence of machine instructions
after substituting the actual parameters provided in the
macro-call for the formal parameters which are used in
the schemata defining the macro-instructions. Thus the
macro-assembler is often considered as extending the
instruction repertory of the computer, and for many
purposes this is the most convenient way of looking at a
combined macro-assembler system. However, such a
system is in fact a combination of two distinct programs,
and any overall view of the process conceals the separate
effects of the component parts, which may perhaps repay
a closer investigation.

We are not concerned here with the second part of the
combined system, as this is merely an ordinary symbolic
assembly routine. The first part, which might be called
the macro-generator, is in effect a processor whose input
and output are both sequences of symbolic instructions
which generally occupy one line of text (or one card)
each. Its operation, apart from the straightforward
copying of input to output, is to replace one line of input
by one or more lines of appropriately defined output,
after performing some substitutions of actual para-
meters taken from parts of the input line for the formal
parameters used in the definition. - When the operation
of the macro-generator is thus isolated it is obvious
that it suffers from certain limitations, the most important
of which follows from the fact that the result of any

macro-generation must be one or more complete instruc-
tions or lines of text. This means that it is not possible
to have macro-definitions that specify only parts of
instructions (such as an address), so that one cannot
use a macro-call whose actual parameters are other
macro-calls.

We can regard a macro-call as the application of a
function (defined by one of the macro-definitions) to
its arguments (the actual parameters in the macro-call).
In these terms the limitation on the generality of the
macro-generator described above is that the domain and
range of these macro-functions do not overlap; the
domain, being actual parameters, is parts of instructions,
while the range is one or more complete instructions.

The macro-generator described in this paper is both
“general” in the sense that it does not suffer from this
asymmetry of domain and range, and ‘general-purpose”
in the sense that it is not associated with a particular
symbolic assembly program but is a separate program
in its own right.

2. Informal description

The General Purpose Macro-generator (GPM) is a
symbol-stream processor. It takes as its input a stream
of characters and produces as its output another stream
of characters which is produced from the input by direct
copying except in the case of macro-calls in the input
stream, which are “evaluated” in a way which is described
below before they are put into the output stream.

2.1 Macro-call

A macro-call consists of a macro-name and a list of
the actual parameters, each separated by a comma.

* Project MAC, Massachusetts Institute of Technology, Cambridge 39, Mass. Formerly of University Mathematical Laboratory,

Corn Exchange St., Cambridge, England.

E

TTOZ ‘0€ Ae uo 1sanb Aq 6i1o°sfeunolpioyxo’|ultuod woly papeojumoq

http://comjnl.oxfordjournals.org/

Macrogenerator

The name is preceded by a section sign (§) and the last
parameter followed by a semicolon, e.g.

§RCVF,305, 1;

Here RCVF is the name of a macro which uses two
parameters. In this call the actual parameters supplied
are 305 and 1.

A macro which uses no parameters would be called
by preceding the name by a section sign and following
it by a semicolon, e.g.

SLINK;

2.2 Evaluation

Before this macro-call can be evaluated, the macro
must have been defined by associating its name with a
symbol string. This string may contain the special
symbols ~1, ~2, etc., which stand for the first, second,
etc., formal parameters; the symbol ~0 stands for the
name of the macro being evaluated. When the macro-
call is evaluated, these symbols are replaced by a direct
copy of the actual parameters supplied in the call.

Thus, for example, if the macro-name 4BC has been
associated with the string

AB~1C~2AB
the macro-call

§ABC,XY,PQ,;
will produce the output

ABXYCPQAB

The system is completely general and it is possible to
use a macro-call in place of or in conjunction with a
symbol string anywhere. In particular macro-calls are
allowed in the actual parameters of other macro-calls
(including the name) and also in the defining string.
The following examples demonstrate this point:

Suppose we have defined the following macro-names

Name Associated string
A A~14
B B§A,X~1X;B
APA P~1~1P

we should then get the following results:—

Macro-call Result of evaluation
§4,C; ACA
§4,ACA;
§4.84,C;; } AACAA
§4,XDX; AXDXA
§B,D; BAXDXAB
§4,P; APA
§APA,Y;
§84,P;,Y; } PYYP

2.3 String quotes
Enclosing any string in the string quotes <...> has
the effect of preventing evaluation of any macro-calls

226

inside; in place of an evaluation, however, one “layer”
of string quotes is removed.

Examples (using the macros defined above):

Input String Result
Q&A4,CHR 0§4,C;R
§4,84,X5>; A$A4,X;A
Q<R O§R;
0<84,C;5>R 084,CHR

The use of string quotes makes it possible to include
any symbol in the output stream except an unmatched
opening or closing string quote.

2.4 Definitions (Part 1)

A macro is defined by associating its name with a
specific symbol string. This is performed by a special
macro DEF which has been written in machine code and
included in the system. DEF takes two arguments: the
name of the macro to be defined, and the defining
symbol string. It is usual to enclose the symbol string
in string quotes in order to prevent any macro-calls or
uses of formal parameters from being effective during
the process of definition (i.e. when the symbol string is
being treated as an argument for DEF). These quotes
will be removed by the normal process of evaluating the
arguments for DEF.

Examples:

The macros A,B and APA used above would be
defined by the following macro-calls.

§DEF,A,(A~14>;
§DEF,B,{ B§A,X~1X;B>;
§DEF,APA,(P~1~1P);

As definition is performed by an ordinary macro-call
(and not a special process) the system ensures that it is
possible to carry out a definition anywhere it is possible
to use a macro-call. In particular a definition can be
included in an actual parameter for a macro-call and
hence in the symbol string defining a macro (as this is
merely part of an actual parameter for a call of the
macro DEF).

In general the actual parameter list of a macro-call is
lost when the call has been completed, and this applies
also to definitions which are part of the list. Definitions
of this sort are therefore temporary and their scope is
confined to this particular macro-call. If a macro name
which has already been defined is defined again by a
call of DEF, the latest definition supersedes the earlier
one, though without destroying it. If the later definition
is a temporary one, the earlier one will become effective
again at the end of the later ones’ scope. This means
that the names used for temporary macro-definitions are
local and can be chosen without considering any larger
context. A fuller account of the effect of using definitions
inside other macro-calls is given in Section 2.6.

TTOZ ‘0€ Ae uo 1sanb Aq 6i1o°sfeunolpioyxo’|ultuod woly papeojumoq

http://comjnl.oxfordjournals.org/

Macrogenerator

2.5 Sequence of operations

The input stream is scanned from left to right and
copied to the output until a macro-call is encountered.
This is then evaluated and the result copied to the output.
The evaluation of a macro-call is performed in the
following stages.

(1) The macro-name and the actual parameters are
evaluated in sequence from left to right. This
process involves in its turn evaluating any macro-
calls which occur so that the whole process of
evaluation is a recursive one.

(2) When the argument list is complete—i.e. when the
semicolon terminating the macro-call is encountered
—the current list of definitions (known as the
environment chain) is scanned in search of the
name of the macro now being evaluated. The
environment chain consists of name-value pairs
which have been established by calls of the macro
DEF, and it is scanned in reverse chronological
order—i.e. from the most recent additions towards
the oldest entry (which is, in point of fact, the
definition of DEF itself). The scanning stops at
the first entry with the correct name, so that the
most recent definition is used. If no corresponding
entry is found, there is an error exit from the
program.

(3) The symbol string corresponding to the macro-
name is now scanned in the same way as the
original input stream (so that any macro-calls
inside it will be evaluated) except that occurrences,
if any, of the symbols ~r where r =0,1,2...
are replaced by exact copies of the corresponding
actual parameter, which has by now been evaluated.
~0 corresponds to the macro-name, ~1 to the
first actual parameter, etc.; if r is greater than the
number of actual parameters supplied, there is an
error exit from the program. Note that in this
operation the symbol string comprising the actual
parameter is copied directly without any further
evaluating processes being performed on it. The
result of the macro-call is the output produced by
this scan.

(4) On reaching the end of the defining string the
argument list (i.e. the macro-name and actual
parameters) are lost and any definitions which
may have been added to the environment chain
in the course of its evaluation are deleted.

(5) Scanning of the input stream is then resumed at
the point where it was interrupted by the final
semicolon of the macro-call.

It is worth noting that all scanning is strictly from left
to right, that each macro is applied (i.e. its defining
string is scanned) immediately the terminating semi-
colon of its call is encountered, and that supplying a
macro with more parameters than it needs produces no
ill effects.

227

2.6 Definitions (Part 2)

We can now describe the effect of the macro DEF
rather more precisely; from this it should be possible to
predict the result of evaluating any expression containing
calls for DEF.

The macro DEF has an ordinary result which is the
name-value pair, and a side effect of attaching this result
to the environment chain. The actual form of the result
can be represented by the triplet (ey:~1:~2w) where
~1, ~2 have their usual meanings—i.e. the evaluated
actual parameters of the call for DEF, €, is a pointer
to the current head of the environment chain, and = is
an internal termination symbol. The side effect is to
install the ¢, in this result as being the new head of the
environment chain. In general neither ¢, nor @ corre-
spond to any external character, and any attempt to
output them, or strings containing them, may lead to
errors.

When the argument list of any macro-call is lost, the
environment chain is modified in such a way that any
name-value pairs which are both in the environment
chain and in the argument list are removed from the
environment chain. This chain is suitably adjusted so
that no other definitions (either previous or subsequent
to these) are lost.

Examples:
§4,X,USDEF,A,{~1~2~1);

has the effect of using a local definition of A in its own
call, so that the result is XUX. This form gives the same
sort of effect as the CPL* expression

fl.. .]wheref[x] = ...

An elegant example of its use is the macro Suc defined
by

§DEF,Suc,{§1,2,3;4;5,6,7,8,9,10,§ DEF,1,{ ~>~1;.>;

The effect of a call,.say, §Suc,3; is to make a temporary
definition of a macro with name 1 and defining string
~3, and then immediately to call it with arguments
2,3,...10. The result is 4 and in fact §Suc,r; =r + 1
forr =0, 1,...9 so that Suc produces the successor of
a digit. The temporary macro has the name 1 so that
§Suc,0; which will produce the defining string ~O0,
will give the correct result.

The effect of a conditional expression can be obtained
by making use of the fact that only the later of two
definitions of the same macro is used. Thus the
expression

a=B—>1y,0

where «, B, y and 8 are strings, perhaps containing
macro-calls, can be translated

§o, §DEF,,(8) ;§DEF, B, {y>3;

* See (Barron et al., 1963); also CPL Elementary Programming
Manual, Edition 2, 1965.

TTOZ ‘0€ Ae uo 1sanb Aq 6i1o°sfeunolpioyxo’|ultuod woly papeojumoq

http://comjnl.oxfordjournals.org/

Macrogenerator

This defines « to be 8 and then B to be y, and then
immediately evaluates §a;. If o = 8, the second defini-
tion will be used, if not, the first.

An example of this technique, making use of the
macro Suc defined above, is

§DEF,Successor,(§~2, § DEF,~2,~1{,§Suc,> ~2{;>;
§DEF,9,(§Suc,>~1{;,0>;;>;

which gives the successor of a two-digit number. Thus
§Successor, o, B; first defines B by the string

o,§Suc,B;
then defines 9 by the string
§Suc,a;,0

and then evaluates §8;.

Thus if B 5% 9 the result is «, 8 + 1, while if 8 =
the result is « + 1,0.

These examples also show the use of string quotes,
particularly in the second parameter of DEF, to control
the stage at which various evaluations are carried out,
and to incorporate free variables into the definitions of
temporary macros. .

The next example shows the use of DEF in a context
in which it is not an actual parameter.
§DEF,FNPROD,(§ DEF,~1~2(§ ~1{,§5~2{,~1;;>>;

’

The macro FNPROD effectively defines the functional
product of its two arguments so that, for example, the
macro call

§FNPROD,Log,Sin;
has exactly the same effect as the definition
§DEF,LogSin,(§Log,§Sin,~1;;);

which defines LogSin to be the functional product of
Log and Sin.

The definitions added to the environment chain as the
result of a call for FNPROD are not part of any argu-
ment list. They form the result of the macro call and
so are not lost when the call is completed. A special
arrangement ensures that these definitions always remain
in the machine on the environment chain, even when
they are produced in circumstances in which other
ordinary results would be immediately output.

The last example shows the use of an auxiliary macro
definition which is recursive.

§DEF,Sum,(§S,~1,~2,0,§ DEF,S,
§~3,8DEF,~3,<8§S,>§Successor,~1,~2;

O88ue,~3;5);
§DEF,»~3{,~1{,>~2;;>530;

The effect of a call such as §Sum,,B,y; is to add the
two-digit number «,f to the single digit y, making use
of the macros Suc and Successor defined above.

The first step in the call of §Sum,3,4,2; will be to call

228

§S,3,4,0; after defining the macro S to be the string

§~3,8DEF,~3,(§S,>§Successor,~1,~2;{,>§Suc,~3;{;>;
§DEF.2,~1{,>~2;;

This in turn will call §0; after defining the macros 0 and 2
to be the strings §5,3,5,1; and 3.4 respectively. The
resulting call for §S,3,5,1; will use the same definition for
S and so will call §1; after defining the macros 1 and 2.
The last step will result from the call of §S,3,6,2; which
will define the macro 2 to be first §S5,3,7,3; and then 3,6
and call §2;. Thus the final result will be 3,6.

2.7 Other basic macros

The basic macro DEF forms a name-value pair and
puts it in the environment chain, but the only use we
can so far make of this is to treat the value as an input
string—i.e. to apply the macro. The basic code macro
VAL allows us to obtain the value associated with a
name without scanning it. Thus it copies the value
string on to the stack as its result, without any evaluation,
as if it were an argument called in by the symbol ~.

Note that §DEF,X,(«); followed by §VAL,X; pro-
duces the result « whatever the string « contains (apart
from unmatched string quotes), and that § DEF, X,{({a)>);
followed by §X; produces the same result. Thus in
most cases it is not strictly necessary to use VAL at all.
However, its use corresponds rather closely to the
important concept of obtaining the value associated
with a name, while the symbols §. . .; can be considered
as standing for “Apply the value of”.

The basic macro UPDATE, which takes two argu-
ments, has the same sort of effect as DEF, except that
instead of establishing a new name-value pair on the
environment chain, it alters the value associated with its
first argument to be its second argument. There is a
limitation on the use of UPDATE as the space available
for the value is fixed by the first definition. The new
string may be of equal length or shorter, but any attempt
to update with a longer string will cause an error exit.

It is often useful to be able to perform simple arithmetic
operations in the course of a macro call. These are made
available by the basic machine code macros BIN and
DEC which do decimal-binary and binary-decimal con-
version, and the macro BAR which performs binary
arithmetic. From these it is easy to define a set of
macros which perform decimal arithmetic on digit
string arguments. The details are given in Part II,
Section 7.4.

3. Uses

The GPM was originally devised for the very practical
purpose of helping to write a compiler for CPL. For
reasons which are irrelevant here, a considerable section
of this compiler consists of manipulations on a tree
structure which are carried out with the aid of a stack.
The technique we decided to use was to write the com-
piler originally in CPL itself, as being the best language
we knew, both for ease of writing and for subsequently

TT0Z ‘0€ Ao U0 158N Aq B10°S[euINOlPIOJXO°|UlWOd WOl papeojumod

http://comjnl.oxfordjournals.org/

Macrogenerator

understanding the operation of the program, and after-
wards to hand-translate this into machine code.

However, as the mode of operation was to use a
stack, the natural way to do this translation was not to
go directly to machine code, but to go via series of “‘stack
operations” each one of which performed a simple well-
defined operation on the stack. Examples of these
“control items” as they were called are

“Load bound variable number 3 onto the top of the
stack”

“Apply the function on the top of the stack to the
actual parameters on the stack immediately behind it”

“Replace the top two items on the stack by their sum.”

Each of these control items can be coded in a few
machine orders, possibly incorporating one or more
parameters, and it was the desire to avoid writing (and
punching) long strings of these which led to the develop-
ment of the GPM. The method we have adopted is to
define a number of the control items as macros and to
translate the original CPL version of the compiler
entirely in terms of these. There are now about 70 of
these basic macros used for stack operations, and in
effect they specify the operation code of a hypothetical
computer organized around a stack.

We started on this course primarily for reasons of
laziness, reinforced by the rationalization that reducing
the amount of repetitious writing and punching would
reduce the number of clerical errors and slips in the
program. (Like so many rationalizations, this one
happens to be perfectly valid while remaining a rational-
ization.) However, we soon found we had a number of
other unexpected bonuses, and what started as a method
of saving trouble very soon became a matter of policy.
Initially we had intended to mix machine code and calls
for macros, and the GPM was designed to make this
possible. We later decided that, for the CPL compiler
at any rate, all machine code sections would be incor-
porated as macro calls even if it involved defining a
special-purpose macro which would only be called once
in the entire compiler program.

The compiler at this stage consists of the following
components:

(a) The original version written on paper in CPL.
This is the basic document from which the others
are derived.

() A hand-translated version of (a) written in the
form of macro calls for control items. This
version is punched and later read by the GPM.

(c) A set of definitions of the basic control items.
This consists of a set of macro calls for DEF
defining each of these in terms of a sequence of
machine code instructions written in the assembly
language of the machine.

(d) A copy of the GPM written in machine code.

We can now use the machine to produce an assembly
language version of the compiler by installing (¢) and
then reading in (c) and (b) which produces the assembly

229

language program as an output. This process, of course,
has only to be done once—in theory. In practice it is
repeated many times as errors in the compiler are dis-
covered or improvements made.

This arrangement has a number of useful features:

(1) The macro form () is relatively easy to follow,
and the translation from (a) to (b) very simple and
straightforward.

(2) The macro form (b) is completely machine inde-
pendent.

(3) The translation from (b) to machine code can be
run on any machine for which the GPM is avail-
able—it is not dependent on having the target
machine or its assembler working.

In some ways this is a sort of “bootstrapping” tech-
nique, but it has the advantage of not imposing any
limits on the sophistication of the final program. The
use of human translation from (a) to (b) allows a con-
siderably more efficient compiler to be produced than
any simple bootstrapping scheme could manage, as not
only is the process under the programmer’s control, but,
if necessary, he is entirely free to introduce new macros
to deal with tricky or unusual situations efficiently.

There are other advantages which flow from the
delayed approach to machine code and the relative
ease of altering the macro definitions. The control
items can exist in at least two forms:

(1) A closed form, in which they appear as calls for
short closed subroutines, perhaps associated with
one or more parameters.

(2) An open form, in which they appear as short
sections of machine code in which the parameters
have been incorporated in some way.

The first form is extremely compact but rather slow,
and the second much longer but also faster. We propose
to use both forms in the CPL compiler—the fast form
for the inner loops and the compact form for the less
frequently used parts of the program. Moreover, by
using another form of closed call, we can count the
number of times each particular section of program is
entered, and thus determine by experiment which parts
of the program form the inner loops. With a deeply
recursive program such as this, it is often very difficult
to be cartain how much the various parts of the program
are used, so an automatic method like this is a con-
siderable convenience.

Having decided which parts are to be macrogenerated
as open and which as closed, we simply enclose the latter
in the string quotes ¢ > and macrogenerate twice. The
first time we use the open definitions of the macros,
when the closed macro calls being enclosed in quotes
are merely copied without the enclosing quotes. The
second macrogeneration is done with the closed defini-
tions of the macros on the stack, and the resulting pro-
gram combines the advantages of speed and compactness.

It is also possible to use the macrogenerator itself to
do some stages of economization of the program. A

TT0Z ‘0€ Ao U0 158N Aq B10°S[euINOlPIOJXO°|UlWOd WOl papeojumod

http://comjnl.oxfordjournals.org/

Macrogenerator

single example will show the general idea—others, some
of a quite sophisticated nature, are being used, but their
description belongs to a paper on the compiler rather
than the GPM. «

The compile-time stack, on which the control items
operate, can be in one of two states: its top element
may be in the accumulator (4-state) or in the main store
(S-state). Transfers from one state to the other are very
simple and only involve one or two orders. The control
items also naturally start in one of these states and finish
in one of them—not necessarily the same—so that they
can be characterized as being A—A4, A—S, S—A or S—S.
We would clearly like to be able to use these minimum
or “natural” forms, particularly in the open form, and
only insert the stack transformations when necessary.

This can easily be done by making the GPM keep
track of the state of the stack at the end of the last
control item—say by defining a macro STACK whose
value is either 4 or S. Then a control item such as X
which is of the form S—A4 would have the following
macrodefinition:

§DEF,X,(§§VAL,STACK;S;§UPDATE,STACK,A;
(machine code for X));

and the macros A4S SA would be defined for trans-
forming the stack state. The macros 44 and SS would
be defined to be null as no transformation is required.
The effect now of a call for X is to call the macros 4.5
or SS depending on the current value of STACK, to
update STACK to the value 4 and then to output the
relevant piece of machine code for the control item.

4. General comments

The GPM is of course a programming language of a
sort. It has an extremely limited and rebarbative syntax
which uses the symbols § and ; as brackets; in some
ways it would be better-looking if these were replaced
by [and] so that a macro call took the form

[MACRONAME, ARGUMENTS)

The symbols actually used have the advantage that
they mean nothing in the normal assembly language of
the Titan (Atlas 2) computer on which the GPM was
first implemented, so that macro calls can be mixed
with machine orders.

The actual symbols used are relatively unimportant;
the facilities they provide are much more interesting,
and one of the remarkable features of the GPM is its
great power in spite of using so little apparatus. Con-
ditional expressions, recursive definitions and similar
advanced features all appeared as it were in the wash—
albeit at the cost of a very considerable obscurity of the
written programs.

It has been our experience that the GPM, while a
very powerful tool in the hands of a ruthless programmer,
is something of a trap for the sophisticated one. It
contains in itself all the undesirable features of every
possible machine code—in the sense of inviting endless
tricks and time-wasting though fascinating exercises in
ingenuity—without any of the irritating ad hoc features
of real machines. It can also be almost impenetrably
opaque, and even very experienced programmers indeed
tend to spend hours simulating its action when one of
their macro definitions goes wrong. Furthermore, it is
remarkably good at using up machine time—fortunately
the programs written for it are usually rather short.

One of its peculiar features is the existence of two sets
of brackets which do not nest—these are < > and § ;.
An examination of the examples in Section 2 shows
that the two sorts operate more or less independently.
Moreover as § and ; can be the results of a macro call,
it is not even necessary that they should match—though,
of course, in practice they always do.

Another unusual feature—at least as far as pro-
gramming languages go—is the fact that definitions are
produced as the result of a macro call. This is rather
like having an ALGOL type procedure which produces a
result which is another procedure declaration.

The GPM has a generic resemblance to the machine
described by Dijkstra (1962) in his paper on Substitution
Processes, though it was developed independently and,
I think, from a different point of view. Dijkstra regards
his machine as a theoretical exercise: the GPM was
produced to meet a pressing practical need.

Indeed, one of the most attractive features of the GPM
is the simplicity of its implementation; the first version
for Titan only uses about 250 orders. The second
section of this paper describes this implementation in
sufficient detail to make it possible for a reasonably
experienced programmer to reproduce it on any suitable
machine in about a week.

Part 2

5. General outline

The implementation described below is based on the
use of a single stack (or push-down list) and forms a
good example of the great convenience and generality
of this sort of organization.

The basic item on the stack is a character, as the GPM
is a character stream processor. In addition to
characters, it is necessary to store a number of pointers

230

on the stack, and each of these, in general, will be the
index number of a cell in the stack considered as a vector.
(An alternative description would be the address of a
cell in the stack relative to the start of the stack.) These
pointers will often need more space than a single
character and, indeed, there is an internal terminating
symbol (written as w) which is not an external character
at all and so may be expected to need more space than a
single character.

TTOZ ‘0€ Ae uo 1sanb Aq 6io°sfeunolpioyxo’|ultuod woly papeojumoq

http://comjnl.oxfordjournals.org/

Macrogenerator

It would be possible to use a stack whose items were
only just large enough to contain all the symbols required,
and to arrange to use several consecutive cells to hold a
pointer when this was required. In the interests of
simplicity and ease of programming, however, the stack
described below has cells which are large enough to
hold a pointer—i.e. a full address. This means that
considerably more space is required for the stack than
is strictly necessary, and on Titan (Atlas 2), for example,
where the first implementation of the GPM was run,
this makes the stack about three times as large as it
would be if the characters were tightly packed. How-
ever, as the initial use of the GPM was to assist in writing
system programs, and as it is not required to be in the
store while any other program is being run, the advan-
tages of simplicity overweighed the disadvantages of
using more space.

5.1 Stack organization

In the diagrams below the stack will be represented
horizontally with its free end on the right. The pointer
S always points to the next available cell. Each cell
contains one character or pointer, and vertical lines are
used to separate the cells (they are sometimes omitted).

The basic objects handled by the GPM are strings of
characters; these may be of any length, and in the
external format they are separated by commas or other
special symbols. Internally they are represented by
preceding them by a cell containing the total number of
stack cells they occupy. Thus the string, ABC, would
be represented on the stack by the four cells

|44]B|C]

The pointer H indicates the length-cell of the incom-
plete string at the top of the stack. While the string is
being assembled this cell holds the number of extraneous
cells between H and S; this is set to zero when a new
string is started.

When the pointer H is zero (as opposed to the cell it
points to) the string being assembled is output character
by character as it is found.

5.2 The main scan

The operation of the GPM is to scan characters
sequentially from left to right and to take certain actions,
described below, on encountering one of the warning
characters { > §, ; and ~. The source of the characters
scanned is determined by a pointer C. If C =0 the
source is the input stream; if not, C points to the stack
cell which contains the next character to be scanned.

If the character scanned is not one of the warning
characters it is copied to a destination determined by
the pointer H. If H = 0 the destination is the output
stream; if not, it is the top of the stack indicated by the
pointer S which is then advanced.

In the CPL descriptions which follow, these two opera-
tions are performed by the routines NextCh and Load,
respectively, which make use of a common working
register A.

231

5.3 String quotes

The characters { and > are always recognized by the
scan. A count g is kept which starts at 1 and is increased
by 1 for each { and decreased by 1 for each) encountered.

When ¢ > 2 the input is regarded as being inside
string quotes, and no other warning characters are
recognized. Further string quotes, either opening or
closing, increment or decrement ¢ as appropriate, and
are also copied if the altered q is also > 2.

When g = 1 the effect of the character { is to set
g = 2 without copying. This has the effect of stripping
off one layer of string quotes each time a string is
scanned until ¢ = 1 which corresponds to the unquoted
input string. The effect of the character > with ¢ =1
is arbitrary—it has been chosen to terminate the scanning
operation and leave the GPM.

When ¢ = 1 the scan also recognizes the other warning
characters and initiates the actions described in Section 6.

5.4 The pointers F and P

The warning character § indicates the start of a new
macro call. The macro is not entered, however, until
the occurrence of the matching warning character ; ,
which may be separated from the § by an unlimited
number of other, possibly nesting, macro calls. This
means that in a typical situation we may have a number
of macro calls which have been initiated by a § but not
yet entered, and at the same time be inside a number of
macro calls which have been entered.

We therefore have two chains on the stack; one,
whose start is indicated by F, gives the macro calls
started by a § but not yet entered, the other, indicated
by P, gives the macro calls already entered but not yet
completed. When the scan encounters a § a new member
of the F-chain is created; when it encounters a ; , the
top member of the F-chain is removed and added to the
P-chain (after suitable modifications). When the end of
a string defining a macro is encountered (i.e. when a
macro call is completed) the top member of the P-chain
is removed together with its associated argument list,
and the results (which comprise the rest of the stack
above the argument list) are copied back over the
abandoned P-chain entry and argument list.

The entries in the P-chain are in effect the links which
specify how the scanning is to be resumed at the comple-
tion of the macro call. They also contain a pointer to
the next entry in the P-chain, and a note of the total
length of the link and argument list to simplify the exit
procedure. They thus require three stack cells and take
the form

lP

¢

where P, and C, are the values of P and C when the ;
was scanned, and ¢ is length of the argument list including
a final terminator w.

TTOZ ‘0€ Ae uo 1sanb Aq 6i1o°sfeunolpioyxo’|ultuod woly papeojumoq

http://comjnl.oxfordjournals.org/

Macrogenerator

The terminator w is added to allow a simple dynamic
check that non-existent arguments are not called for;
strictly speaking either ¢ or = is redundant, but the
inclusion of both considerably simplifies the pro-
gramming.

As the F-chain entries have to be converted into
P-chain entries when the macro call is entered, they also
must consist of three cells. Only two of these are used:
one points to the next member of the F-chain; the other
holds the value of H when the § was encountered. This
is restored when the macro is entered and the F-entry
converted to a P-entry. The third cell is set to zero.

F
. |HolFal0]

Example v

The macro X is defined by the string X ~ 1 and the
macro Y by the string

Y§X§X, Y ~1;;
The input string is §X,§Y.,Z;;

Fig. 1 shows the state of the stack when the scan-

reaches the ~1 in the string defining X for the first time.

C, and C; point to the last character in the input
string and the last character in the string defining Y,
respectively. If the ‘input string is not itself another
macro definition, C, will be zero. H,, F, and P, are
the initial values of H, F and P.

5.5 The E-chain

The macros already defined in the system are repre-
sented by a name-value pair which is attached to a chain
starting with the pointer £. The entry corresponding to
the macro X defined in the last example will take the
form

<y E-chain
- | Eol2| X141 X | ~[1]w]
€= € ———— >

name value

Additions to the E-chain are made by using the special
machine code macro DEF. Alterations to the value
associated with a name can be made by using the machine
code macro UPDATE.

E-chain entries are treated specially at the completion
of any macro call which has generated them either as
part of its argument list or as part of its result. E-chain

entries in the argument list are detached from the
E-chain and lost in the same way as other arguments.
E-chain entries in the results are always copied back
onto the stack (even if H = 0) and their pointers corre-
spondingly adjusted.

5.6 CPL programs*

The detailed description of the operation of the warn-
ing characters is given in Section 6 as a combination of
diagrams representing the stack before and after, and
CPL programs using the following conventions.

The stack is a vector ST of type index and the stack
pointers S,E,H,P, F and C are all of type index. 4 and W
are working variables.

The common subroutines which are used in various
places in the detailed CPL programs are described in
Section 5.7.

The basic scanning cycle is the following.

Start: NextCh
ifA=Cdo§q:=qg+ 1;g0to Q2§
goto A ="‘§ — Fn,

A ="* — Nextltem,

A =" — Apply,

A =‘~"— LoadArg,
A = Marker — EndFn,
A =)" = Exit,

Copy

Copy: Load

Scan: if g =1 go to Start

Q2: NextCh

ifAd='Cdo§q:=¢q-+ 1;goto Copy§

if A =)’ go to Copy

qg:.=q—1

go to g = 1 — Start, Copy

At the start of the program the initial entry is to Start

with H,P,F and C all zero and g = S is initially set
to the first free cell above the machine code definitions,
and E is set to the start of the chain of their name-value
pairs.

5.7 Common subroutines

Input. The routine NextCh reads the next character
from the current stream into 4. If C = 0 the current
stream is input, otherwise it will be the defining string
of some previously defined macro. After finding the

* Readers unfamiliar with CPL will find some notational
assistance in Appendix 1.

lS

lF lH|lP
|

\4 N ¥ J I 7
- - - |Ho|Fo[02| X[8[8|Po| Col2| Y[2|Z|w| Y| | [0[2|X[9|9] |Cy|2[X |3 Y|Z|w|X|
[[| I | | |
F-entry P-entry F-entry P-entry
Fig. 1

232

TT0Z ‘0€ Ao U0 158N Aq B10°S[euINOlPIOJXO°|UlWOd WOl papeojumod

http://comjnl.oxfordjournals.org/

Macrogenerator

next character, C is advanced if appropriate.

routine NextCh is
§ testC =0
then do ReadSymbol [A]
ordo A, C := ST[C], C + 1
return §

Output. The routine Load disposes of the character
in A. If H = 0 the character is output directly, other-
wise it is loaded onto the top of the stack—i.e. at
ST[S]—and S is advanced.

routine Load is
§ test H=0
then do WriteSymbol {A]
ordo ST[S],S:=4,5 +1
return §

Argument numbers

The function Number[A] takes the single character in
A and finds the equivalent binary integer. This function
is necessary as the internal representation of the decimal
digits is not always the corresponding binary integer.
The use of this function may make it possible to refer
to arguments with serial number 10 or more by using
an appropriate single non-numerical character.

Marker

This is some recognizable integer which is not the
internal representation of any external character. In
the Titan implementation a one in the sign bit with
zeros elsewhere is used. It is represented in the CPL
programs as w or Marker.

Machine language macros

It is necessary to introduce a few macros which are
primitive—i.e. cannot be defined by a character string.
These have to be written in machine code (or some other
suitable language). They are distinguished from the
ordinary macros in the environment chain by having the
first cell of their value (which in the case of an ordinary
macro would hold the length of the defining string)
marked with a recognizable quantity. Then either it or
the next cell will contain the address of the start of the
machine code program. In the Titan implementation
the marking is done by making the sign bit of this cell a
one, the remaining bits holding the starting address.

The routine JumplfMarked[x] tests if x is marked in
this way, and if so jumps to the indicated address. The
machine code macros must finish with a special form of
EndFn to copy back their results and the jump to Start.

6. Effect of warning characters
6.1 The warning character §

Initial State: Fy,H,,

| F lHlS
Final State: —————|Hp|F,| 00|

233

Fn: H,S,F,ST[S], ST[S+1], ST[S+2], ST[S+3] :=
S+3, S+4, S+1, H,F,0,0
go to Start

This initiates a new function call by adding it to the
F-chain, and starts a new item for the argument list,
saving the old value of H. The empty cell between F
and H will be used later when the function is applied
(i.e. when the matching ; is reached).

6.2 The warning character

l H, l So
Initial State: ———-—— |Oo| ——————-— |
H l S
Final State: ----- |8g|-——=——--]

where 0p =Sy — Hy — 0,

0, is the number of extraneous cells between H and §
(i.e. cells containing housekeeping information which is
not a part of the item starting at 6,). 6, therefore
contains the true length of the item starting there.

If H =0 initially the characters being scanned are
output at once, so the effect is merely to copy the comma.

Nextltem: if H =0 go to Copy

H,S,ST[H], ST[S] :=
S, S+1,S—H—ST
[H]0
go to Srart

6.3 The warning character ;

If H =0 initially, the semicolon is merely copied.
If H + 0 we have

Initial State:
\F IR

Po,Co——— {60~~~ | Ho| Fal0o| =D (=D 16, —|
Final State:
H J,P ' S
[/ — |1 Pol Col—|——1| — = 6| —]
$

where 6y = 0y + ¢

and 6; = S—H—6, == true length of last argument.

¢ is the number of fresh extraneous cells introduced
by this macro call—i.e. the arguments together with the
three initial and one final housekeeping cells.

If Hy = O there is no 6, and so no 6, but the effect is
otherwise the same.

The next step is to search the environment chain for
the name of the macro. This is done by the routine
call Find[P+2]. If the value corresponding to this is
marked, the macro is a machine code one and is entered
directly. If the value is not marked, C is set to its first
character and scanning resumed. If the name does not
appear in the environment chain there is an error exit
with suitable monitor printing.

TT0Z ‘0€ Ao U0 158N Aq B10°S[euINOlPIOJXO°|UlWOd WOl papeojumod

http://comjnl.oxfordjournals.org/

Macrogenerator

The effect of the routine Find[w] is to put the value
corresponding to the name w into W as follows.

w

Initial State: ———| / |M [—
E-chain

Final State: % ! w

| | 7] (name) | (value),

routine Find[w] is
§1 AW :=Ew
§2 for r = 0 to ST[W]—1do
if ST[W-+r] 5 ST[A+r+1] go to Next

W .= A+14+ST[W]
return

Next : A :=ST[A] §2

repeat until 4 < 0

go to Monitor7 §l1

Apply: if H = 0 go to Copy
F,P,H,S,ST[H],ST[S),ST[F—1],ST[F],ST[F+1] :=
ST[F),F,ST[F—1},S+1,S—H, Marker, S—F+2,P,C
unless H=0 do ST[H] := ST[H]+ST[P—1]

Find [P+2]
Jumpifmarked[ST[W]]
C:=W+1

go to Start

6.4 The warning character ~

If P=0 the warning character is outside any macro
call and is merely copied. Otherwise the next (single)
character is read and the corresponding argument copied
without alteration to the top of the stack (or output if
H=0). If the argument list has too few arguments,
there is an error exit.

Initial State:

1P L3
—————— |41Pol Col D) |- | — | —]|

Load Arg: if P =0 go to Copy

NextCh

W, W1 := P+2, Number[A]

until W1 = 0do
§ if ST[W] = Marker go to Monitor8

W,W1 .= W4+ ST[W]W1—1 §
if ST[W] = Marker go to Monitor8
for r = 1to ST[W]—1 do
§ A := ST[W+r]
Load §

go to Start

6.5 The warning character o

This character is an internal terminator and never
occurs in the input stream. It is inserted automatically
at the end of argument lists (by the warning character ;)

234

and at the end of definition strings (by the macro DEF).
It should never be output.

When it is encountered as a warning character it indi-
cates the end of the defining string of the macro
currently being scanned. The effect required, therefore,
is to terminate this call, and to resume the scanning of
the string it interrupted—i.e. approximately:

Initial State:
LP LS
|$|Po| Col (Argument list) || (Results) |

Final State: 1S
| (Results) |

The situation, however, is complicated by the need to
deal with the environment chain, and by various alter-
native cases introduced by the several possible values of
H. The first step is to remove any definitions in the
argument list from the environment chain, and to adjust
any definitions in the results so that the chain will be
correct after removing the ¢ extraneous cells and copying
back the results. This is done as shown in Fig. 2.

The members of the environment chain in the results
are all reduced by ¢, except for the oldest which is
altered to point to the first member of the environment
chain which is before the argument list. Any definitions
in the argument list are ignored.

EndFn: ST[S],A := E,S

while ST[4] > P—1+ST[P—1] do
ST[A),A := ST[A]—ST[P—1],ST[A]

W .= ST[A]

while W>P—1 do
W .= ST[W]

ST[A] := W

E .= ST[S]

E is first stored in ST[S] in order to deal in a uniform
manner with the case where there is only one definition
in the results.

After this step there are three cases:
(i) H=0

The results can only be definitions as all others will
already have been output by Load.

Initial State:

P S
H =0 ————|¢|Py|Cy| = ll |
Defs only
¢
Final State: S
Co, H=0 ————- I—_l__l
(i) H>P

H must be reduced by ¢

TTOZ ‘0€ Ae uo 1sanb Aq 6i1o°sfeunolpioyxo’|ultuod woly papeojumoq

http://comjnl.oxfordjournals.org/

Macrogenerator

Initial State:

1P LE 1S
| N [i]
el e |$1Po| Col-——~- et -l =] == |l
Def Def Def Def
> <~
Arguments, etc.
Final State:
| E
| |
I y | VS
el e RS |$1Po| Col == === === === -~ == | —— |- | —— |-
>
Def Def Def
In preparation for:
JE
¥ | ¥ l } S
el e S el e SEEEE I |
R > <«
Def Def Def
Results
Fig. 2.
Initial State: then do H := H—ST[P—1]
or do ST[H] := ST[H]—-ST[P—1]
1P [AH LS P,C,S,A,W := ST[P],ST[P-+1],
"""" |$1Pol Col = 6ol ! S—ST[P—1],P—1,P—1+ST[P—1]
é until 4=S do
_ ST[A],A,W := ST[W],A+1,W+1
Final State: go to Start
VH |S
Co —---- | |Bol——

(iii) H<P
ST[H] which holds the number of extraneous cells
must be reduced by ¢

Initial State:

H P)

—————— |6|———~|¢[Po| Col = '|
¢

Final State:

y H | S
—————— e a—

where 6, =0, — ¢

unless H=0 do
test H>P

235

6.6 The warning character)

This is only a Warning Character if it occurs at the
outermost level—i.e. unmatched by any opening string
quote. In this case it terminates the program.

Exit: finish

7. Basic machine code macros
7.1 DEF

The state on entering the machine code after a call
§DEF,nnn,xxx; will be

VH \ P)
Eq,Co———|00|-———|$|Po| Co|4| D| E| F|at|nnn| B| xxx]| |
>
o B
¢

with C still equal to C,,.

TT0Z ‘0€ Ao U0 158N Aq B10°S[euINOlPIOJXO°|UlWOd WOl papeojumod

http://comjnl.oxfordjournals.org/

Macrogenerator

At the end of the machine code we want the state to be

H VE |S
CoPo=————- |80l -—--- | Eolox|nnn| Bl xxx|w]
<>
« B
where 6y = 0, — ¢.

If H =0 the only difference is that ST[H] is not
relevant. Note that unlike the ordinary EndFn case the
result of DEF is always left on the stack and never
output even if H = 0.

DEF: unless H=0 do ST[H] := ST[H]—ST[P—1]
P,EW,ST[P—1] := ST[P],P—1,P,E
until W+4-6= S do
ST[WW .= ST[W+6],W+1
S =W
go to Start

7.2 VAL

The state on entering the machine code after a call
SV AL ,nnn; will be

E-chain VH
|ec|nnn| Bl xxx|w|-— - —— - [E—

| P 1S
————|¢|Py|Co|4|V |A|L|x|nnn|w|

We want to load the string starting after 8 until (but
not including) the first . If H = 0 this will be output,
otherwise loaded onto the stack as the result of VAL.
We can then use the ordinary EndFn sequence to remove
the call for VAL and its argument list, and to copy back
the result if any. We load the value until the first
terminator instead of the whole length $, as it is possible
that a call for UPDATE has replaced the original string
by a shorter one. (See UPDATE.)

VAL: Find[P+ 6]
until ST[W+1]=Marker do
§ AW := STIW+1],W+1
Load §
go to EndFn

7.3 UPDATE

The state on entering the machine code after a call for
§UPDATE,nnn,yy; will be

E-chain
————| |o|nnn|B|xxxx|w|--———
<>
B
y P | S
————|§|Po|Col7|U|P| D|A|T|E|o|nnn| y|yy ||
<>
Y

We want to check that y is not greater than B (and
Monitor if it is) and then copy the string yyw (but not

236

the) into the value string after 8. We leave 8 undis-
turbed so that we can verify that no later UPDATE
uses a string longer than the space available. We copy
back the terminator so that subsequent uses of VAL
will only produce the latest value. The final state is
therefore

E-chain
|| nnn|B|yy|w|x|@|- - - -

vP 1S
———~|$|Po|Col7|U|P| D|A|T | E|a|nmnly|yy|w]|

and we return to EndFn.

UPDATE: Find[P+9]
A := P+9+ST[P+9]
if ST[A]>ST[W] go to Monitor9
for r=1to ST[A] do
ST[W++r] := ST[A+r]
go to EndFn

7.4 Arithmetic operations

Integer arithmetic is provided with the aid of three
machine code macros: BIN converts a digit string,
possibly preceded by a sign, into a signed binary integer.
(Note that the largest integer allowed is determined by
the stack cell size; the result of BIN is a single cell.)
DEC is the inverse operation—it converts a signed binary
integer into a decimal digit string of characters, preceded
by a minus if necessary. The argument of DEC is a
binary number (not a character string) so that it can
normally only be used immediately after a macro which
produces one. BAR takes three arguments, the first
being the character +, —, X, [or R. The other two
being binary numbers. It performs the indicated
operation on these. §BAR, R, x, y; gives the remainder
when x is divided by y.

The decimal arithmetic operations are defined as
follows.

§DEF,+- ,(§DEC8SBAR,~+ ,§BIN, ~1; ,8BIN, ~2;;:>;
§DEF,—,(§DEC§BAR,—,§BIN, ~1;,8§BIN, ~2;;.>;
§DEF,x ,(§DECSBAR, X §BIN, ~1; ,8§BIN, ~2;;:>;
§DEF,Quot (§DEC§BAR,[,§BIN, ~1;,§BIN, ~2;;:>;
§DEF,Rem,(§DEC§BAR,R§BIN, ~1; ,§BIN, ~2;;5>;

Thus the calls §+,x,y; , §—,x,y; etc., give the sum,
difference, etc., of the decimal digit strings x and y. It
would be perfectly possible to treat the macros +, —, X,
Quot and Rem as machine code macros. This would
give faster operation but probably more machine code.

BIN
Initial State
| P VS
————— || Po| Col4| BT |N || dddd | |

We want to load the binary equivalent of the string
dddd

TT0Z ‘0€ Ao U0 158N Aq B10°S[euINOlPIOJXO°|UlWOd WOl papeojumod

http://comjnl.oxfordjournals.org/

Macrogenerator

BIN: W,A := 0,ST[P+7] = ‘+’—>P+38,
ST[P+T] = ‘——P+S8,
P+
until ST[A] = Marker do
W, A := 10W—+ Number[ST[A]], A+1
S,ST[S] := S+1, ST[P+7] =*"—— — W, W
goto EndFn

DEC
Initial State
y P)
————— |#|Po| Col4| D|E|C|2|x|w|

x is the binary number to be converted.

except a terminator = which can only appear in the
input stream in this state by a machine error.
@ g¢=1
This is the main operative state and all the warning
characters may be encountered. There are three
states
(A) Direct input to output. This has C=H=P=F=0.
(B) After § and before the corresponding ; —i.e.
while assembling an argument list. This has
H-0, F+£0 and F>P.
(C) After ; and before the w of the macrodefinition—
i.e. while scanning a macro definition string. This
has C+#0, P+#0 and P> F.

DEC: if W<0do§W,A := —WS 8.2 Effect of warning characters
Load §
Wl e 1 WARNING
until 10W1> W do W1 := 10W1 craracteR A B ¢
§ W.AWL :— Quot[W,W1],Rem[W,W1], § IE’ZIETB) ’;,’;)(Ct"[l?gm]F{”:(:g)opy
Load § wijio ‘ H=~0 Nextltem
. ; Copy Apply (—C) Monitorl
reg) izt E“:;.l;nWl <l ~ Copy P=0 Monitor2 LoadArg
g P> 0LoadArg
BAR w Monitor5 Monitor6 EndFn(—A,BorC)
P : S > Finish Monitor8 Monitor8
. ¥ ¥
Initial State — ——— - — |¢|Po|Col4| B|4|R|2| f]2]x|2|y|=]| (g=1)

BAR: W,A := ST[P+9],ST[P+11]

A = ST[P+T]="+"—>W-+A,
ST[P+T7]="—"—>W—A,
ST[P+T]="X">WX A,
ST[P+T]="]"—Quot[W,A],

Rem[W,A]
Load
go to EndFn

8. Error detection

The syntactic forms used by the GPM are simple
but also confusing, and misprints and slips are very easy
to make. In the simplest implementation, errors of
input cause the program to run wild, and to produce
curious and unpredictable results which are difficult or
impossible to follow. The error monitor system described
in this section does much to avoid this problem and
makes it considerably easier to discover the slips and
mistakes in the input stream. The cost, however, is to
increase the size of the program considerably, and
while it is probably essential toinclude some form of
checking such as this in any implementation in general
use, it would not be necessary to do so on a new machine
where only tested inputs were to be used.

8.1 Possible states

There are a number of possible states of the macro-
generator, and in each one certain characters only are
allowed.

(1) ¢>1
Inside string quotes any character can be scanned

There are also checks which are applied to ensure
that an argument called for exists (Monitors 3 and 4)
and that a macro name applied (or used as an argument
for VAL) has been defined (Monitor 7), that UPDATE
arguments are not too long (Monitor 9), and that the
argument of BIN contains only decimal digits (after a
possible initial sign) (Monitor 10).

8.3 Monitor output

The monitor printing produced by any of these error
entries consists of some indication of the cause of the
error together, perhaps, with the name of the macro
on the stack immediately in front of the P-pointer or the
F-pointer. If the error is one of those from which
recovery is possible (assuming that the cause has been
correctly diagnosed) the ordinary action of the GPM
is resumed after a suitable comment. If it is impossible
to guess the intention of the user, a general monitor
(Monitor 11) is given which prints the name and all
the arguments of the current macro and the names of
the macros in the P and F chains. It then loads a query
on the stack (as an argument or result) and returns either
to Start (states A and B) or to EndFn (state C). The
effect of this is to make it possible to find further errors
in the same input stream without requiring another run.

Experience has shown that it is advisable to limit the
total number of characters output after any monitor,
particularly if macrogeneration is always resumed after
an error in this way.

The details of the monitor printing can best be ascer-
tained from the CPL program of the entire GPM which
is given in Appendix 2.

237

TT0Z ‘0€ Ao U0 158N Aq B10°S[euINOlPIOJXO°|UlWOd WOl papeojumod

http://comjnl.oxfordjournals.org/

Macrogenerator

Appendix 1
Note on CPL
The CPL programs included in this paper should be forr=atob for r:= a step 1 until b
comprehensible to anyone familiar with ALGOL with- while B do C L: if B then
out much difficulty. The following are the chief nota- begin C;
tional features which may be unfamiliar. go to L end;
CPL Nearest ALGOL equivalent C repeat while 5 L: g ’B then go to L;
gl ::::::gl} begin end N .
B—>x, y(expression) if B then x else y The negated CPL conditions also exist.
if Bdo C if B then C; unless B do C if - Bthen C
test B then do C1 if B then C1 until B do C etc.
or do C2 else C2; C repeat until B
routine proce dure . Comments in CPL are
return signifies the dynamic end of a indicated by a double
procedure body . vertical bar on the left
(] used fgr a_rgument lists as well as and extend to the end
array indices of the line.
ab,c := p,q,r Simultaneous assignment. This
has no exact ALGOL equivalent. Inside the string quotes
The three assignments a := p; *5 stands for newline
b:=gq; c:=r; are taken to *g stands for space
happen simultaneously *t stands for rab.
Appendix 2
|| CPL program for GPM §2 let routine Load be
et . . §test H=0
routine GPM [index n] be then do WriteSymbol[A]
|| nis the stack size allowed. This should be as large as or do ST[S], S := 4, S+1
||possible—say 10,000. return §
and routine NextCh be
: §test C=0
1 prefer index then do ReadSymbol[A]
let A, W all be index ordo A, C := ST[C], C+1
and H, P, F,Call =0 return §
and S, E, g, Marker = 39, 33,1, —2 120 and routine Find [x] be
and ST = Newarray[index, (0,n)] §21 A, W:=Ex
and MachineMacro == Formarray [label, (1,6)][DEF, §2.2 for r = 0 to ST[W]—1 do
VAL, UPDATE, BIN, DEC, BAR] if ST[W+r] + ST[A+r-+1]goto Next
and MST = Formarray[logical, (0,38)][—1,4, ‘D, W .= A+1+ST[W]
‘E’; ‘F,a _1, return
094, ‘V,y ‘A’9 ‘L,’ _29 Next:A = ST[A] §2.2
6,7’ ‘U,s ‘P” ‘D’a ‘A-” ‘T” ‘E,l '_3’ l'epeat until 4 <0
124,B’,‘I’,'N’, —4, go to Monitor7 §2.1
21,4,°D’, ‘B, °C’, =5, and routine JumpIfMarked|[x] be
27,4,°B’,‘A’, ‘R’, —6] -§if x < 0 go to MachineMacro[—x]
for k = 0 to 38 do ST[k] := MST[k] return §

|| The name-value pairs for the six machine code macros || This routine depends on the method of marking machine
||are first assembled in the vector MST and then copied ||code macros. The method adopted here (which is
||into the base of the stack. ||different from that described in the paper or used in the

238

TTOZ ‘0€ Ae uo 1sanb Aq 6i1o°sfeunolpioyxo’|ultuod woly papeojumoq

http://comjnl.oxfordjournals.org/

Macrogenerator

||actual Titan program) is to make the value a negative
||index integer which is used to index the label vector
||MachineMacro, whose entries are the labels of the
||corresponding programs.

and Number [x] = x — 16

and Char[x] = x + 16
|| These are implementation-dependent functions. They
||convert the index equivalent of a decimal digit read in
||with ReadSymbol to the corresponding number (also of
||type index) and vice versa.

|| Main cycle

Start: NextCh
ifA=Cdo§q:=qg+1;goto Q2§
goto A ==°‘§ — Fn,

A = ‘) — Nextltem,
A ="*y — Apply,
A = ‘~"— LoadArg,
A = Marker — EndFn,
A =" — Exit,
Copy

Copy: Load

Scan: if g =1 go to Start

Q2: NextCh

ifA=‘Cdo§q:=¢q+1;goto Copy$
if A = *)’ go to Copy

q:=q—1

go to g = 1 — Start, Copy

|| Warning Character Actions
Fn: H,S,F,ST[S),ST[S+1],ST[S+2},ST[S+3] :=
S+3,S+4,S+1,H, F,0,0
go to Srart
Nextltem: if H = 0 go to Copy
H,S,ST[H],ST[S] := S,S+1,S—H—ST[H],0
go to Srart
Apply: ifP>F go to Monitorl
if H=0 go to Copy
ST[F),F,ST[F—11,S+1,S—H, Marker,S—F+2,P,C
unless H=0 do
ST[H] := ST[H]+ST[P—1]
Find[P+2]
JumplfMarked[ST[W]]
C:= W+1
go to Start
LoadArg: if P=0 go to H=0 — Copy,Monitor2
NextCh
W .= P42
if Number[A]<0 go to Monitor3
for r=0 to Number[A]—1 do
§ W .= WHST[W]
if ST[W]= Marker go to Monitord§
forr =1 to ST[W]—1 do
§ A := ST[W+r]
Load §
go to Start

239

EndFn: if F>P go to Monitor5
ST[S),A := E,S
while ST[A]>P—1+4ST[P—1] do
ST[A),4 := ST[A]—ST[P—1],ST[A]

W .= ST[A]
while W>P—1 do

W .= ST[W]
ST[A] .= W
E := STI[S]
unless H=0 do

test H>P

thendo H := H—ST[P—1]

or do ST[H] := ST[H]—ST[P—1]
P,C,S,A,W := ST[P],ST[P+1],S—ST[P—1],

P—1,P—1+4+ST[P—1]

until A=S do

ST[A),A,W := ST[W],A+1,W+I
go to Start

Exit: unless C=H=0 go to Monitor8

Finish

|| Machine Code Macros

DEF: unless H—0 do ST[H] := ST[H]—ST[P—1]+6
ST[P—1),ST[P-+5], E := 6,E,P+5
go to EndFn

|| This version of DEF is shorter than that given in
|| Section 7 as it leaves EndFn to copy back the definition.
VAL: Find[P+6)
until ST[W+1] = Marker do
§ AW := ST[W+I1],W-+1
Load §
go to EndFn
UPDATE: Find[P+9]
A = P+9+ST[P+9]
if ST[A]>ST[W] go to Monitor9
for r=1to ST[A] do
ST[W+r] := ST[A+T1]

go to EndFn
BIN: W,A =0, ST[P+7]="+"— P48,
ST[P+7)=*‘—"— P+38,
P+

until ST[A4] = Marker do
§ let x = Number[ST[A]]
unless 0<<x<9 go to Monitor10
W,A := 10W+x, A+1 §
S,ST[S] := S+1, ST[P+7]="—"— —WW,
go to EndFn
W .= ST[P+T7]
if W<0 do
§ W,A:=—W," =’
Load §
§2.1 let W1 =1
until 10W1>Wdo W1 := 10W1
§2.2 A,W,W1 := Char[Quot[W,W1]],
Rem[W,W1],W1/10

DEC:

Load §2.2
repeat until W1<1 §2.1
go to EndFn

TTOZ ‘0€ Ae uo 1sanb Aq 6i1o°sfeunolpioyxo’|ultuod woly papeojumoq

http://comjnl.oxfordjournals.org/

Macrogenerator

BAR: W,A = ST[P+9],ST[P+11]

A= ST[P+T7]="+"— W+A,
ST[P+7]="—"— W—A,
ST[P+T]=X"—> WXA,
ST[P+T7]="‘]" — Quot[W,A],
Rem[W, A]

Load

go to EndFn

|| Monitor for errors

§3 let routine Irem[x] be
§3.1 letah = AH
H:=0
for k=1 to ST[x]=0 — S—x—1, ST[x]—1 do
§ A = ST[x+k]
Load §
if ST[x]=0 do
Write[‘. . .*t(Incomplete)’]
AH = a,h
return §3.1
[| This routine outputs the item on the stack starting at
||ST[x). If the item is not complete, printing stops at
||ST[S—1] and is followed by . . . (Incomplete)’.

|| Monitor Entries and Effects

Monitorl: ||Unmatched ; in definition string. Treated

as ;>

Write[**nMONITOR: Unmatched semicolon
in definition of ’]

Item[P+2]

Write[**nlf this had been quoted the result
would be *n’]

go to Copy

Monitor2: || Unquoted ~ in argument list in input
|| stream. Treated as {~)
Write[**nMONITOR: Unquoted tilde in argu-
ment list of ’]
Item[F+-2]
Write[**nlf this had been quoted the result
would be *n’)

go to Copy
Monitor3: ||Impossible character (negative) as argu-
|| ment number. Terminate.
Write[**nMONITOR: Impossible argument
number in definition of ’]
Item[P+-2]

go to Monitorll

Monitor4: Not enough arguments supplied in call.

I
|| Terminate.

Write[*nMONITOR: No argument ’]
H:=0

Load

Write[‘in call for’)

Item[P+-2]

go to Monitorll

240

Monitor5:

|| Terminator in impossible place; if C=0,
||this is the input stream. Probably
|| machine error: Terminate. If C+#O0, this
||is an argument list. Probably due to a
|| missing semicolon: Final semicolon in-
||serted.
Write[*nMONITOR: Terminator in’]
if C=0 do
§ Write[‘input stream.
machine error.’]
go to Monitorll §
Write[‘argument list for’]
Item[F+2]
Write[**nProbably due to a semicolon missing
from the definition of ’]
Item[P+2]
Write[**nlf a final semicolon is added the
result is *n’]
C:=C-1
go to Apply
|| Undefined macro name: Terminate.
Write[*nMONITOR: Undefined name’]
Item[W]
go to Monitorll
||Wrong exit (not C=H=0).
|| error: Terminate.
Write[*nMONITOR: Unmatched) .
ably machine error.’]
go to Monitorl1

Probably

Monitor7:

Monitor8: Machine

Prob-

Monitor9: ||Update string too long: Terminate.
Write[*nMONITOR: Update argument too
long for’]
Item[P+-9]

go to Monitorl1
Monitor10: || Non-digit in argument for BIN. Ter-
|| minate.
Write[**nMONITOR: Non-digit in number’]
go to Monitorll
Monitorl1: ||General monitor after irremediable
|| errors.
W .= 20
Write[‘*nCurrent macros are’]
until P=F=0 do
§4 let W1 be index
test P>F
then do § W1,P .= P+2,ST[P]
Write[**nAlready entered’] §
ordo § WI,F := F+2,ST[F]
Write[‘*nNot yet entered’] §
for r = 1to Wdo
§4.1 Item[W1]
if ST[W1]=0 do break
W1 .= WI1+ST[W1]
if ST[W1]=Marker do break
unless W=1 do
Write[**nArg’,
r, *r’] §4.1
Ww:=1 §4

TT0Z ‘0€ Ao U0 158N Aq B10°S[euINOlPIOJXO°|UlWOd WOl papeojumod

http://comjnl.oxfordjournals.org/

Macrogenerator

Write[**nEnd of monitor printing’]
A:=Q

Load

go to P> F — EndFn,Start §1

||End of CPL program for GPM.

Acknowledgements

The symbol string manipulator or macrogenerator
described in this paper has been in use in the Mathe-

References

matical Laboratory since early in 1964. During this
period it has been developed somewhat, and the present
version, which is described here, is both more general
and simpler than the original one. Many people have
contributed to this improvement both by using the
program and discovering its difficulties, and by direct
suggestion and discussion. I should particularly like to
thank Mr. P. Frost and Mr. J. S. Rayner for the work
they did in getting the two versions of the GPM actually
running on Titan.

DUKSTRA, E. W. (1962). “An Attempt to Unify the Constituent Concepts of Serial Program Execution,” in Symbolic Languages

in Data Processing, Gordon and Breach: London.

BARRON, D. W, et al. (1963). ““The main features of CPL,” The Computer Journal, Vol. 6, p. 134.
CPL Elementary Programming Manual, Edition 11 (Cambridge), Cambridge University Mathematical Laboratory, May 1965.

Book Review

Numerical Methods and FORTRAN Programming, by D. D.
McCracken and W. S. Dorn, 1964; 457 pages. (London
and New York: John Wiley and Sons Ltd., 57s.)

This textbook combines instruction in computer programming
and numerical techniques suitable for undergraduates in
science and engineering, and, to a lesser extent, for those in
mathematics. Teachers will find it a useful guide to the
selection of material for a practical course in computational
methods.

The authors adopt an interesting form of presentation in
which numerical methods and programming instruction in
FORTRAN II are developed in parallel, so that, at all stages,
suitable applications are available to illustrate in detail the
techniques described for both topics; the arrangement is
therefore more attractive and powerful than a straight com-
bination of a programming manual and a tract on numerical
methods. There are, however, disadvantages; for example,
roughly two hundred pages pass before the DO statement is
introduced, but this is offset by the excellent balance and
relevance of topics discussed earlier.

Three chapters on FORTRAN II are introduced at different
stages throughout the book, which derive from McCracken’s
well known Guide to FORTRAN Programming (Wiley, 1961);
the material is rearranged and slightly extended, but otherwise
is substantially the same. A useful chapter on Program
Development is added, in which three of the case studies
discussed in the earlier work are substantially developed to
illustrate various practices involved in preparing programs
for computer operation.

The numerical methods discussed fall into the following
chapters: evaluation of functions (power series, Chebyshev,
continued fractions); roots of equations (Newton-Raphson,
complex roots); evaluation of integrals (trapezoidal, Simpson,
Gauss); simultaneous linear equations (Gauss elimination;
Gauss-Seidel iteration) ; ordinary differential equations (Taylor
series, Runge-Kutta, predictor-corrector methods); partial
differential equations of the linear, second-order type (dif-
ference methods, Liebmann). This is a standard selection
for a limited course on numerical methods, but the interplay

F

241

between requirements of mathematical formulation, style
of programming, and the study of error analysis provides a
distinctive approach to the subject. The authors regard the
application of numerical methods as a form of preparation
for further studies in numerical analysis, and emphasise that
a student completing the text will not be “‘a finished numerical
analyst.” Nevertheless from Chapter 2 (on “Errors”)
onwards, disciplines of error analysis are practised with a
meticulous attention to detail that should impress upon the
reader the need for careful analysis in all computer applica-
tions. The generation and propagation of various forms of
numerical errors is studied systematically, and analytical
difficulties arising from ill-conditioning, or convergence
problems, are illustrated in appropriate contexts. Careful
comparisons are also made of the merits of alternative pro-
cedures, and the case studies in each chapter, though generally
elementary, are subjected to similar standards of criticism.

This book appears at a time when new efforts are being made
to construct realistic courses for computer education. Its
objective and successful elementary approach could persuade
those who insist that access to a computer should follow a
thorough grounding in numerical analysis, of the value of
practical experience (on a small machine!) at all stages of
computer education, provided sound counsel is at hand.
Above all it may direct early enthusiasms to the currently less
fashionable, but in the long run more beneficial, fields of design
and application in science and engineering; present trends
towards more esoteric applications may retard developments
in these fields, in which computers are the most natural and
valuable tools.

An illogical feature of the book is the price. McCracken’s
Guide to FORTRAN Programming costs 23/- (paper back
only), and is accommodated in roughly 120 pages of the pre-
sent volume. A paper back version of the new book is due
shortly at 35/—; the additional 300 pages, with all the instruc-
tion in numerical methods and programming arts can be
bought for 12/— more, and at that price are remarkably good
value.

H. H. GREENWOOD

TTOZ ‘0€ Ae uo 1sanb Aq 6i1o°sfeunolpioyxo’|ultuod woly papeojumoq

http://comjnl.oxfordjournals.org/

